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ABSTRACT

We present a supervised neural network approach to the determination of photometric redshifts. The method was
fine-tuned to match the characteristics of the Sloan Digital Sky Survey, and as base of ‘‘a priori’’ knowledge, it ex-
ploits the rich wealth of spectroscopic redshifts provided by this survey. In order to train, validate, and test the net-
works, we used two galaxy samples drawn from the SDSS spectroscopic data set, namely, the general galaxy sample
(GG) and the luminous red galaxy subsample (LRG). The method consists of a two-step approach. In the first step,
objects are classified as nearby (z< 0:25) and distant (0:25 < z < 0:50), with an accuracy estimated as 97.52%. In
the second step, two different networks are separately trained on objects belonging to the two redshift ranges. Using a
standardmultilayer perceptron operated in a Bayesian framework, the optimal architectures were found to require one
hidden layer of 24 (24) and 24 (25) neurons for the GG (LRG) sample. The final results on the GG data set give a
robust �z ’ 0:0208 over the redshift range 0:01; 0:48½ � and �z ’ 0:0197 and ’ 0.0238 for the nearby and distant
samples, respectively. For the LRG subsample we find instead a robust �z ’ 0:0164 over the whole range, and
�z ’ 0:0160 and’ 0.0183 for the nearby and distant samples, respectively. After training, the networks have been
applied to all objects in the SDSS table GALAXYmatching the same selection criteria adopted to build the base of
knowledge, and photometric redshifts for circa 30million galaxies having z < 0:5were derived. A catalog containing
redshifts for the LRG subsample was also produced.

Subject headinggs: galaxies: distances and redshifts — galaxies: photometry — large-scale structure of universe
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1. INTRODUCTION

After the pioneering work by the Belgian astronomer
Vandererkhoven, who in the late 1930s used prism-objective
spectra to derive redshift estimates from the continuum shape and
its macroscopic features (notably the Balmer break at�40008),
Baum (1962) was the first to experimentally test the idea that
redshift could be obtained frommultiband aperture photometry
by sampling, at different wavelengths, the galaxy spectral energy
distribution (SED). After a period of relative lack of interest, the
‘‘photometric redshifts’’ technique was resurrected in the 1980s
(Butchins 1981), when it became clear that it could prove use-
ful in two similar but methodologically very different fields of
application:

1. As a method to evaluate distances when spectroscopic es-
timates become impossible due either to poor signal-to-noise ra-
tio, to instrumental systematics, or to the fact that the objects under
study are beyond the spectroscopic limit (cf. Bolzonella et al.
2002).

2. As an economical way to obtain, at a relatively low price in
terms of observing and computing time, redshift estimates for
large samples of objects.

The latter field of application has been widely explored in the
last few years, when the huge wealth of data produced by a new
generation of digital surveys, consisting of accurate multiband
photometric data for tens and even hundreds of millions of ex-
tragalactic objects, have become available. Photometric redshifts
are of much lower accuracy then spectroscopic ones but even so,
if available in large number and for statistically well-controlled
samples of objects, they still provide a powerful tool for deriving
a three-dimensional map of the universe, a map which is crucial
for a variety of applications, to name just a few: studying large-
scale structure (Brodwin et al. 2006), constraining the cosmolog-
ical constants and models (Blake & Bridle 2005, and references
therein; Budavári et al. 2003; Tegmark et al. 2006), and mapping
matter distribution using weak lensing (Edmondson et al. 2003,
and references therein).
In this paper we present a new application of neural networks

to the problem of photometric redshift determination and use the
method to produce two catalogs of photometric redshifts, one
for �30 million objects extracted form the SDSS DR5 main
GALAXY data set and a second one for a luminous red galaxy
sample.
The paper is structured as follows. In xx 2 and 3, we briefly

summarize the various methods for the determination of pho-
tometric redshifts and the theory behind the adopted model of
neural network. In x 4, we describe both the photometric data set
extracted from the SDSS and the base of knowledge used for the
training and test, and in x 5 we discuss the method and present
the results of the experiments. It needs to be stressed that even
though finely tailored to the characteristics of the SDSS data, the
method is general and can be easily applied to any other set pro-
vided that a large enough base of knowledge is available.
As stressed by several authors, photometric redshift samples

are useful if the structure of the errors is well understood; in x 7
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we therefore present a discussion of both systematic and random
errors and propose a possible strategy to correct for systematic
errors (x 6). In x 8we briefly describe the two catalogs. Finally, in
x 9, we discuss the results and present our conclusions.

This paper is the first in a series of three. In the second one
(M. Brescia et al. 2007, in preparation), we shall present the cat-
alog of structures extracted in the nearby sample using an un-
supervised clustering algorithmworking on the three-dimensional
data set produced from the SDSS data. In Paper III (R. D’Abrusco
et al. 2007, in preparation) we shall complement the information
contained in the above-quoted catalogs by discussing the statis-
tical clustering of objects in the photometric parameter space.

2. PHOTOMETRIC REDSHIFTS

Without entering into too much detail, photometric redshifts
methods can be broadly grouped in a few families: template fit-
ting, hybrid, and empirical methods.

Template fitting methods are based on fitting a library of tem-
plate spectral energy distributions (SEDs) to the observed data
and differ mainly in how these SEDs are derived and in how they
are fitted to the data. SEDs may either be derived from popula-
tion synthesis models (Bruzual & Charlot 1993) or from the spec-
tra of real objects (Coleman et al. 1980) carefully selected in order
to ensure a sufficient coverage of the parameter space (mainly in
terms of morphological types and/or luminosity classes). Both
approaches (synthetic and empirical) have had their pros and
cons widely discussed in the literature (cf. Koo 1999; but see also
Fernández-Soto et al. 2001; Massarotti et al. 2001a, 2001b;
Csabai et al. 2003). Synthetic spectra, for instance, sample an
‘‘a priori’’ defined grid of mixtures of stellar populations and
may either include unrealistic combinations of parameters or ex-
clude some unknown cases. On the other hand, empirical tem-
plates are necessarily derived from nearby and bright galaxies
and therefore may not be representative of the spectral properties
of galaxies falling in other redshift or luminosity ranges. On-
going attempts to derive a very large and fairly exhaustive set
of empirical templates using the SDSS spectroscopic data set are
in progress and will surely prove useful in the near future.

Hybrid SED fitting methods making use of a combination of
both observed and theoretically predicted SEDs have been pro-
posed, with mixed results, by several authors (Bolzonella et al.
2000; Padmanabhan et al. 2005).

The last family of methods, i.e., the empirical ones, can be ap-
plied only to ‘‘mixed surveys,’’ i.e., to data sets where accurate
and multiband photometric data for a large number of objects are
supplemented by spectroscopic redshifts for a smaller but still
significant subsample of the same objects. These spectroscopic
data are used to constrain the fit of an interpolating function
mapping the photometric parameter space and differ mainly in
the way such interpolation is performed. As it has been pointed
out bymany authors (Connolly et al. 1995; Csabai et al. 2003), in
these methods the main uncertainty comes from the fact that the
fitting function is just an approximation of the complex relation
existing between the colors and the redshift of a galaxy and by
the fact that as soon as the redshift range and/or the size of the pa-
rameter space increase, a single interpolating function is bound
to fail. Attempts to overcome this problem have been proposed
by several authors. For instance, Brunner et al. (1999) divided
the redshift and color range in several intervals in order to op-
timize the interpolation. Csabai et al. (2003) used instead an im-
proved nearest neighbor method consisting of finding, for each
galaxy in the photometric sample, the galaxy in the training set
which has the smallest distance in the parameter space and then
attributing the same redshift to the two objects.

More recently, several attempts to interpolate the a priori
knowledge provided by the spectroscopic redshifts have been
made using statistical pattern recognition techniques such as
neural networks (Tagliaferri et al. 2002; Vanzella et al. 2004;
Firth et al. 2003) and support vector machines (Wadadekar 2005),
with results which will be discussed more in detail in what fol-
lows. It has to be stressed that since the base of knowledge is
purely empirical (i.e., spectroscopicallymeasured redshifts), these
methods cannot be effectively applied to objects fainter than the
spectroscopic limit. To partially overcome this problem, notice-
able attempts have been made to build a ‘‘synthetic’’ base of
knowledge using spectral synthesis models, but it is apparent
that, in this case, the uncertainties of the SED fitting and empir-
ical methods add up. In any case, it is by now well established
that when a significant base of knowledge is available, empirical
methods outperform template fitting ones, and that the use of the
latter should be confined to those cases where a suitable base of
knowledge is missing.

3. THE MULTILAYER PERCEPTRON

Neural Networks (hereafter NNs) have long been known to be
excellent tools for interpolating data and for extracting patterns
and trends, and in the last few years they have also found their
way into the astronomical community and are used in a variety
of applications (see the reviews by Tagliaferri et al. 2003a,
2003b, and references therein), ranging from star-galaxy separa-
tion (Donalek 2007), spectral classification (Winter et al. 2004),
and photometric redshift evaluation (Tagliaferri et al. 2002; Firth
et al. 2003). In practice, a neural network is a tool which takes a
set of input values (input neurons), applies a nonlinear (and un-
known) transformation, and returns an output. The optimization
of the output is performed by using a set of examples for which
the output value is known a priori. NNs exist in many different
models and architectures, but since the relatively low complexity
of astronomical data does not pose special constrains to any step
of the method which will be discussed below, we used a very
simple neural model known as multilayer perceptron or MLP,
which is probably the most widely used architecture for practical
applications of neural networks.

In most cases an MLP consists of two layers of adaptive
weights with full connectivity between inputs and intermediate
(namely, hidden) units, and between hidden units and outputs
(see Fig. 1). Note, however, that an alternative convention is
sometimes also found in literature which counts layers of units
rather than layers of weights and regards the input as separate

Fig. 1.—Schematic representation of the multilayer perceptron.
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units. According to this convention, the network showed in
Figure 1 would be called a three-layer network. However, since
the layers of adaptive weights are those which really matter in
determining the properties of the network function, we refer to
the former convention.

3.1. MLP: The Flux of the Computation

The MLP realizes a complex nonlinear mapping from the in-
put to the output space. Let us denote the N input values to the
network x ¼ fx1; x2; : : : ; xdg. The first layer of the network
forms a linear combination of these inputs to give a set of in-
termediate activation variables,

a
(1)
j ¼

Xd
i¼1

w
(1)
ji xi þ b

(1)
j ; j ¼ 1; : : : ;M ; ð1Þ

with one variable a
(1)
j associated with each of theM hidden units.

Here w
(1)
ji represents the elements of the first-layer weight matrix

and b(1)
j

are the bias parameters associated with the hidden units.
The variables a

(1)
j are then transformed by the nonlinear activa-

tion functions of the hidden layer. Here we restrict attention to
tanh activation functions. The outputs of the hidden units are then
given by

zj ¼ tanh a
(1)
j

� �
; j ¼ 1; : : : ;M : ð2Þ

The zj are then transformed by the second layer of weights and
biases to give the second-layer activation values a

(2)
k

a
(2)
k ¼

XM
j¼1

w
(1)
k j zj þ b

(2)
k ; k ¼ 1; : : : ; c; ð3Þ

where c is the number of output units. Finally, these values are
passed through the output-unit activation function to give output
values yk , where k ¼ 1; : : : ; c. Depending on the nature of the
problem under consideration we have

1. For regression problems, a linear activation function, i.e.,
yk ¼ a

(2)
k .

2. For classification problems, a logistic sigmoidal activation
functions applied to each of the output independently, i.e.,

yk ¼
1

1þ exp �a
(2)
k

� � :

3.2. MLP Training Phase

The basic learning algorithm for MLPs is the so-called back-
propagation and is based on the error-correction learning rule.
In essence, back-propagation consists of two passes through the
different layers of the network: a forward pass and a backward
pass. In the forward pass an input vector is applied to the input
nodes of the network, and its effect propagates through the net-
work layer by layer. Finally, a set of outputs is produced as the
actual response of the network. During the backward pass, on the
other hand, theweights are all adjusted in accordancewith the error-
correction rule. Specifically, the actual response of the network is
subtracted from a desired (target) response (which we denote as a
vector t ¼ ft1; t2; : : : ; tcg) to produce an error signal. This error
signal is then propagated backward through the network. There

are several choices for the form of the error signal to produce and
this choice still depends on the nature of the problem, in particular,

1. For regression problems we adopted the sum-of-squares
error function:

E ¼ 1

2

XN
n¼1

Xc

k¼1

yk xn;wð Þ � t nk
� �2

:

2. For classification problemswe used the cross-entropy error
function:

E ¼ �
X
n

Xc

k¼1

t nk ln ynk þ (1� t nk ) ln (1� ynk )
� �

:

The weights are adjusted to make the actual response of the
networkmove closer to the desired response in a statistical sense.
In this work we adopted a computationally more efficient variant
of the back-propagation algorithm, namely, the quasi-Newtonian
method. Furthermore, we employed a weight-decay regulariza-
tion technique in order to limit the effect of the overfitting of the
neural model to the training data; therefore, the form of the error
function is

Ẽ ¼ E þ �
1

2

X
i

w2
i ;

where the sum runs over all the weights and biases. The � con-
trols the extents to which the penalty term 1

2

P
i w

2
i influences the

form of the solution.
It must be stressed that the universal approximation theorem

(Haykin 1999) states that the two-layer architecture is capable of
universal approximation, and a considerable number of papers
have appeared in the literature discussing this property (cf. Bishop
1995, and reference therein). An important corollary of this result
is that, in the context of a classification problem, networks with
sigmoidal nonlinearities and two layers of weights can approx-
imate any decision boundary to arbitrary accuracy. Thus, such
networks also provide universal nonlinear discriminant func-
tions. More generally, the capability of such networks of approx-
imating general smooth functions allows them to model posterior
probabilities of class membership. Since two layers of weights
suffice to implement any arbitrary function, one would need spe-
cial problem conditions (Duda & Hart 1973) or requirements to
recommend the use of more than two layers. Furthermore, it is
found empirically that networks with multiple hidden layers are
more prone to getting caught in undesirable local minima. As-
tronomical data do not seem to require such level of complexity
and therefore it is enough to use just a double weights layer, i.e., a
single hidden layer.
As was just mentioned, it is also possible to train NNs in a

Bayesian framework, which allows us to find the most efficient
ones among a population of NNs differing in the hyperparameters
controlling the learning of the network (Bishop 1995), in the num-
ber of hidden nodes, etc. The most important hyperparameters
being the so-called � and �. The parameter � is related to the
weights of the network and allows us to estimate the relative
importance of the different inputs and the selection of the input
parameters which are most relevant to a given task (automatic
relevance determination; Bishop 1995). In fact, a larger value
for a component of � implies a less meaningful corresponding
weight. The parameter � is instead related to the variance of the
noise (a smaller value corresponding to a larger value of the noise)

D’ABRUSCO ET AL.754 Vol. 663



and therefore to a lower reliability of the network. The imple-
mentation of a Bayesian framework requires several steps: initial-
ization of weights and hyperparameters and training the network
via a nonlinear optimization algorithm in order to minimize
the total error function. Every few cycles of the algorithm, the
hyperparameters are reestimated and eventually the cycles are
reiterated.

4. THE DATA AND THE ‘‘BASE OF KNOWLEDGE’’

The Sloan Digital Sky Survey (hereafter SDSS) is an ongoing
survey to image approximately � sr of the sky in five photometric
bands (u; g; r; i; z), and it is also the only survey so far to be com-
plemented by spectroscopic data for �106 objects.7 The exis-
tence of such a spectroscopic subset (SpS), together with the
accurate characterization of biases and errors, renders the SDSS
a unique and ideal playground on which to train and test most
photometric redshifts methods.

Several criteria may be adopted in extracting galaxy data from
the SDSS database (Yasuda et al. 2001). We preferred, however,
to adopt the standard SDSS criteria and use the GALAXY table
membership. The data used in this work were therefore extracted
from the SDSS catalogs. In particular, the spectroscopic subsam-
ple (SpS), used for training and testing purposes, was extracted
fromData Release 4 (DR4; e.g., Adelman-McCarthy et al. 2006).
While this workwas in progress, Data Release 5 (DR5)was made
publicly available. Thus, the photometric data used to produce the
final catalogs were derived from the latter data. We wish to stress
that this extension of the data set was made possible by the fact
that the properties of the DR5 are the same of the DR4 except for
a wider sky coverage.

In this paper wemade use of two different bases of knowledge
extracted from the SpS of the DR4:

1. General Galaxy Sample or GG.—Composed of 445,933
objects with z < 0:5 matching the following selection criteria:
dereddened magnitude in r band, r < 21, and mode ¼ 1, which
corresponds to primary objects only in the case of deblended
sources.

2. Luminous Red Galaxy sample or LRG.—Composed of
97,475 Luminous Red Galaxy candidates having spectroscopic
redshift <0.5.

The SDSS spectroscopic survey (Eisenstein et al. 2001) was
planned in order to favor the observation of the so-called luminous

red galaxies or LRGs, which are expected to represent a more ho-
mogeneous population of luminous elliptical galaxies that can be
effectively used to trace the large-scale structures (Eisenstein et al.
2001). We therefore extracted from the SDSS DR4 all objects
matching the above-listed criteria and furthermore flagged as
primTarget=‘‘TARGET_GALAXY_RED.’’

LRGs are of high cosmological relevance since they are both
very luminous (and therefore allow us to map the universe out
to large distances) and clearly related to the cosmic structures
(being preferably found in clusters). Furthermore, their spectral
energy distribution is rather uniform,with a strong break at 40008
produced by the superposition of a large number of metal lines
(Schneider et al. 1983; Eisenstein et al. 2003). LRGs are there-
fore an ideal target to test the validity of photometric redshift
algorithms (see, e.g., Hamilton 1985; Gladders & Yee 2000;
Eisenstein et al. 2001; Willis et al. 2001; Padmanabhan et al.
2005). The selection of LRG objects was performed using the
same criteria extensively described in Padmanabhan et al. (2005),
and given the rather lengthy procedure, we refer to that paper
for a detailed description of the cuts introduced in the parameter
space.

Since it is well known that photometric redshift estimates de-
pend on the morphological type, age, metallicity, dust, etc., it has
to be expected that if some morphological parameters are taken
into account besides magnitudes or colors alone, estimates of
photometric redshifts should become more accurate. Such an
effect was, for instance, found by Tagliaferri et al. (2002) and
Vanzella et al. (2004).

In order to be conservative and also because it is not always
simple to understand which parameters might carry relevant in-
formation, for each object we extracted from the SDSS database
not only the photometric data but also the additional parameters
listed in Table 1. These parameters are of two types; those which
we call ‘‘features’’ (marked asF in Table 1) are parameters which
potentiallymay carry some useful information capable of improv-
ing the accuracy of photometric redshifts, while those named
‘‘labels’’ (marked as L) can be used to better understand the
biases and the characteristics of the ‘‘base of knowledge.’’

For the magnitudes concerned, and at in contrast with other
groups who used modelMag, we used the so-called dereddened
magnitudes (dered), corrected for the best available estimate of
the SDSS photometric zero points:

�(u; g; r; i; z) ¼ (�0:042; 0:036; 0:015; 0:013;�0:002);7 See the SDSS Web pages at http://www.sdss.org / for further details.

TABLE 1

List of the Parameters Extracted from the SDSS Database and Used in the Experiments

Parameter

(1)

N

(2)

Explanation

(3)

F/L

(4)

objID .................................................. . . . SDSS identification code . . .

R.A. .................................................... . . . Right ascension (J2000.0) . . .

decl. .................................................... . . . Declination (J2000.0) . . .
petroR50i .......................................... 1 50% of Petrosian radius in the ith band, i ¼ u; g; r; i; z F

petroR90i .......................................... 2 90% of Petrosian radius in the ith band, i ¼ u; g; r; i; z F

deredi ................................................ 3 Dereddened magnitude in the ith band, i ¼ u; g; r; i; z F

lnLDeVr .............................................. 4 log likelihood for De Vaucouleurs profile, r band F

lnLExpr .............................................. 5 log likelihood for exponential profile, r band F

lnLStarr ............................................ 6 log likelihood for PSF profile, r band F

Spectroscopic redshift ........................ z . . . L

Spectral classification index .............. specClass . . . L

Notes.—Col. (1): SDSS code. Col. (2): Running number for features only. Col. (3): Short explanation. Col. (4): Type of param-
eter, either feature (F ) or label (L).

MINING SDSS ARCHIVE. I. 755No. 2, 2007



as reported in Padmanabhan et al. (2005). It has to be stressed,
however, that such corrections are of little relevance for em-
pirical methods, since they affect all data sets equally.

Finally, we must stress that we impose the condition that the
objects had to be ‘‘primary’’ (mode ¼1) and detected in all five
bands. The latter condition being required by the fact that all
empirical methods suffer, oneway or the other, from the presence
of missing data, and to our knowledge, no clear-cut method has
been found to overcome this problem.

4.1. Feature Selection

In order to evaluate the significance of the additional features,
our first set of experiments was performed along the same line as
described in Tagliaferri et al. (2002) using a multilayer perceptron
with one hidden layer and 24 neurons. In each experiment, the
training, validation, and test sets were constructed by randomly
extracting from the overall data set three subsets, respectively con-
taining 60%, 20%, and 20% of the total amount of galaxies.

On the sample, we run a total of N þ 1 experiments. The first
one was performed using all features, while the other N were
performed taking away the ith feature, with i ¼ 1; : : : ;N . For
each experiment, following Csabai et al. (2003), we used the test
set to evaluate the robust variance �3 obtained by excluding all
points whose dispersion is larger then 3 � (see x 7). The values
are listed in Table 2.

As can be seen, the most significant parameters are the magni-
tudes (or the colors). Other parameters affect only the third digit
of the robust �, and due to the large increase in computing time
during the training phase (which scales as N 2, where N is the
number of input features) and to avoid loss of generality of
higher redshifts, where additional features such as the Petrosian
radii are either impossible to measure or affected by large errors,
we preferred to drop all additional features and use only the mag-
nitudes. Despite what was found in Vanzella et al. (2004) and
Tagliaferri et al. (2002), the fact that additional features do not
play a significant role may be understood as a consequence of the
fact that in this work the training set is much larger and more
complete than in these earlier works and therefore the color pa-
rameter space is (on average, but see below) better mapped.

5. THE EVALUATION OF PHOTOMETRIC REDSHIFTS

One preliminary consideration: as was first pointed out by
Connolly et al. (1995), when working in the near and intermedi-
ate redshift universe (z < 1), themost relevant broadband features
are the Balmer break at 40008 and the shape of the continuum in
the near UV. Near-IR bands become relevant only at higher red-
shift, and this is the main reason why we decided to concentrate
on the near universe (z < 0:5), where the SDSS optical bands pro-
vide enough spectral coverage.

One additional reason comes from the redshift distribution of
the objects in the SpS DR4 shown in Figure 2 (solid line). As can
be clearly seen, the histogram presents a clear discontinuity at
z ’ 0:25 (86% of the objects have z < 0:25 and only 14% are at
a higher redshift), and in practice no objects are present for
z > 0:5.
In Figure 2 we also, plot as a dotted line, the redshift distri-

bution of the galaxies in the SpS data set which match the LRG
photometric selection criteria. As can be seen, within the tail at
z > 0:25 only a very small fraction (11.4%) of the objects do not
match the LRG selection criteria. In Figure 3 we plot the redshift
of objects belonging to the GG sample against their luminosity in
the r band; black dots represent those galaxies which have been a
posteriori identified as LRG. As is clearly seen, the overall dis-
tribution at redshift�0.25 drops dramatically at r � 17:7, due to
the selection criteria of the spectroscopic SDSS survey. At higher
redshift, namely z > 0:25, the galaxy distribution is dominated
by LRGs with few contaminants and extends to much fainter lu-
minosities. Nevertheless, LRGs are systematically brighter then
GG galaxies all over the redshift interval z < 0:50.
Such large dishomogeneity in the density and nature of train-

ing data poses severe constraints on any empirical method, since

TABLE 2

Results of the Feature Significance Estimation

Parameters

(1)

�3
(2)

All ...................................................... 0.0202

All but 1............................................. 0.0209

All but 2............................................. 0.0213

All but 4 and 5 .................................. 0.214

All but 6............................................. 0.215

Only magnitudes................................ 0.0199

Notes.—Col. (1): Features used. Features are num-
bered as in Table 1. Col. (2): Robust � of the residuals.

Fig. 2.—Distribution of redshifts in the SpS sample. Solid line: GG sample.
Dashed line: Non-LRG sample. Dotted line: LRG sample (see text for details).
Notice the sharp drop at z � 0:25.

Fig. 3.—Distribution of the objects in the GG sample vs. the r magnitude
(gray dots). We plot the LRG objects as black dots. [ See the electronic edition
of the Journal for a color version of this figure .]
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the different weights of samples extracted in the different redshift
bins would lead either to overfitting in the densest region or to the
opposite effect in the less populated ones. Furthermore, the dom-
inance of LRGs at z > 0:25 implies that in this redshift range the
base of knowledge offers a poor coverage of the parameter space.

The first problem can be solved by taking into account the fact
that, as shown in Tagliaferri et al. (2002) and Firth et al. (2003),
NNs work properly even with scarcely populated training sets,
and by building a training set which uniformly samples the pa-
rameter space, or in other words, which equally weights different
clusters of points (note that in this paperwe use theword ‘‘cluster’’
in the statistical sense, i.e., to denote a statistically significant ag-
gregation of points in the parameter space). In the present case
the dominance of LRGs at high redshifts renders the parameter
space heavily undersampled.

In fact, as we will show in Paper III (R. D’Abrusco et al. 2007,
in preparation), a more detailed analysis of the parameter space
shows that at high redshift, the objects group into one very large
structure containing more than 90% of the data points, plus sev-
eral dozens of much smaller clusters.

5.1. The Nearby and Intermediate Redshifts Samples

In order to tackle the above-mentioned problems, we adopted
a two-step approach; first, we trained a network to recognize
nearby (i.e., with z < 0:25) and distant (z > 0:25) objects, then
we trained two separate networks to work in the two different
redshift regimes. This approach ensures that the NNs achieve
good generalization capabilities in the nearby sample and leaves
the biases mainly in the distant one. To perform the separation
between nearby and distant objects, we extracted from the SDSS
DR4SpS training, validation, and test setsweighting, respectively,
60%, 20%, and 20% of the total number of objects (449,370 gal-
axies). The resulting test set, therefore, consisted of 89,874 ran-
domly extracted objects. Extensive testing (each experiment was done performing a separate random extraction of training, vali-

dation, and test sets) on the network architecture lead to a MLP
with 18 neurons in one hidden layer. This NN achieved the best
performances after 110 epochs, and the results are detailed, in the
form of a confusion matrix, in Table 3. As can be seen, this first
NN is capable of separating the two classes of objects with an
efficiency of 97.52%, with slightly better performances in the
nearby sample (98.59%) and slightly worse in the distant one
(92.47%).

In Figure 4 we plot against the redshift the percentage (cal-
culated binning over the redshifts) for the objects in the test set
which were misclassified (i.e., objects belonging to the nearby
sample which were erroneously attributed to the distant one and
vice versa). The distribution appears fairly constant from zspec �
0:05 to�0.45, while higher (but still negligible respect to the to-
tal number of objects in the sample) percentages are found at the
extremes.

Note that when using photometric data alone, the absence of
training data for z > 0:5 does not allow us to evaluate the frac-
tion of contaminants having z > 0:5 which are erroneously at-
tributed to the distant sample. However, given the adopted cuts in
magnitude, this number may be safely assumed to be negligible.

Fig. 4.—Percentage distribution of misclassified objects of GG sample nor-
malized to the total number of galaxies in each redshift bin.

Fig. 5.—Top: GG sample, trend of the interquartile error and of the robust �
as a function of the number N of the neurons in the hidden layer. The nearby and
distant samples are plotted separately. Bottom: Same as above, but for the LRG
sample.

TABLE 3

Confusion Matrix for the ‘‘Nearby-Distant’’ Test Set

SDSS nearby SDSS far

NN nearby.................. 76498 1096

NN far ........................ 1135 11145
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5.2. The Photometric Redshifts

Once the first network has separated the nearby and distant
objects, we can proceed to the derivation of the photometric red-
shifts working separately in the two regimes. Since NNs are ex-
cellent at interpolating data but very poor in extrapolating them,
in order to minimize the systematic errors at the extremes of the
training redshift ranges we adopted the following procedure.

For the nearby sample we trained the network using objects
with spectroscopic redshift in the range 0:0; 0:27½ � and then con-
sidered the results to be reliable in the range 0:01; 0:25½ �. In the
distant sample, instead, we trained the network over the range
0:23; 0:50½ � and then considered the results to be reliable in the
range 0:25; 0:48½ �.

In order to select the optimal NN architecture, extensive test-
ing was made varying the network parameters and for each test
the training, validation, and test sets were randomly extracted from
the SpS. The results of the Bayesian learning of the NNs were
found to depend on the number of neurons in the hidden layer;
for the GG (LRG) sample the performances were best when this
parameter was set to 24 for the nearby sample and for the distant
one (24 and 25, respectively, for the LRG sample). In Figure 5

we give the trends as a function of the number of hidden neu-
rons, of the interquartile errors, and of robust dispersion obtained
for the nearby and distant GG samples, respectively.
For the GG sample, the best experiment, the robust variance

turned out to be �3 ¼ 0:0208 over the whole redshift range and
0.0197 and 0.0245 for the nearby and distant objects, respec-
tively. For the LRG sample, we obtained �3 ’ 0:0163 over the
whole range, and �3 ’ 0:0154 and ’0.0189 for the nearby and
distant samples, respectively. In the upper panels of Figures 6
and 7 we plot the spectroscopic versus the photometric redshifts
for the GG and the LRG samples, respectively. Due to the huge
number of points that wouldmake difficult to see the trends in the
densest regions, we preferred to plot the data using isocontours
(using a step of 0.02 times the maximum data point density).
The mean value of the residuals are �0.0036 and �0.0029

for the GG and the LRG samples, respectively. These figures
alone, however, are not very significant since systematic trends
are clearly present in the data as it is shown in Figure 8 and in
Figure 9, where we plot for each 0.05 redshift bin the average
value of the photometric redshifts and the robust � of the
residuals.

6. INTERPOLATIVE CORRECTION

The most significant deviations, as expected (Connolly et al.
1995), are clearly visible in the nearby sample for z < 0:1 and in

Fig. 6.—Top: Photometric vs. spectroscopic redshifts for the objects in the
GG test set. The continuous lines are isodensity contours increasing with a step
of 2% of the maximum density. The crosses mark the average value of photo-
metric redshifts in a specific spectroscopic redshift bin (see text), while the error
bars give the robust variance �3. Bottom: Same as above, but after the correction
for the systematic trends via interpolation (see text).

Fig. 7.—Same as Fig. 6, but for the LRG sample.
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the distant sample at z � 0:4. The first feature is due to the fact
that at low redshifts faint and nearby galaxies cannot be easily
disentangled by luminous and more distant objects having the
same color. The second one is instead due to a degeneracy in the
SDSS photometric system introduced by a small gap between
the g and r bands. At z � 0:4, the Balmer break falls into this gap,
and its position becomes ill defined (Padmanabhan et al. 2005).

It needs to be stressed, however, that these trends represent a
rather normal behavior for empirical methods which has already
been explicitly noted in Tagliaferri et al. (2002) and Vanzella et al.
(2004) and is clearly visible (even when it is not explicitly men-
tioned) in almost all photometric redshift data sets (Wadadekar
2005) available so far for the SDSS.

In order to minimize the effects of such systematic trends, but
at the risk of a slight increase in the variance of the final catalogs,
we applied to both data sets an interpolative correction com-
puted separately in the two redshift intervals. We used a �2 fit-
ting to find, separately in each redshift regime, the polynomials
which best fit the average points. These polynomials (of the
fourth and fifth order, respectively) turned out to be, for the GG
sample,

P4 0:005; 1:570;�12:577; 78:948;�157:961½ � ð4Þ
P5 12:15;�178:2; 1039:3;�2959:0; 4135:5;�2271:3½ �; ð5Þ

and for the LRG sample,

P4 0:011; 0:885;�1:820; 21:350;�53:159½ � ð6Þ
P5 13:1;�192:5; 1123:3;�3207:2; 4504:5;�2491:6½ �: ð7Þ

Thus, the correction to be applied is

z corrphot ¼ zphot� z calcphot � zspec

� �
; ð8Þ

where z calcphot ¼ P4(zspec) for near objects and z calcphot ¼ P5(zspec) for
the distant ones.

Obviously, when applying this method to objects for which
we do not possess any spectroscopic estimate of redshift, it is im-
possible to perform the transformation (eq. [8]) to correct NNs’
zphot estimates for systematic trends, and we are obliged to use an
approximation. In other words, we replace the unknown zspec
with zphot in the equation. (8), obtaining the relation

z̃ corrphot ¼ zphot� z̃ calcphot � zphot

� �
; ð9Þ

where z̃ calcphot ¼ P4(zphot) or P5(zphot), depending on the redshift
range.

This is equivalent to assuming that the same NN’s zphot distri-
bution represents, with good approximation, the underlying and

Fig. 8.—Histograms of residuals for the GG sample in slices of redshift.Up-
per panels: Before the correction. Lower panels: After the correction. Fig. 9.—Same as Fig. 8, but for the LRG sample.
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unknown zspec distribution. After this correction we obtain a ro-
bust variance �3 ¼ 0:0197 for the GG sample and 0.0164 for the
LRG samples, computed in both cases over the whole redshift
range, and the resulting distributions for the two samples are
shown in the lower panels of Figures 6 and 7.

7. DISCUSSION OF THE SYSTEMATICS
AND OF THE ERRORS

As noticed by several authors (see, e.g., Schneider et al. 2006;
Padmanabhan et al. 2005), while some tolerance can be accepted
on the amplitude of the redshift error, much more critical are the
uncertainties about the probability distribution of those errors.
This aspect is crucial (Padmanabhan et al. 2005), since the ob-
served redshift distribution is related to the true redshift distri-
bution via a Fredholm equation which is ill-defined and strongly
dependent on the accuracy with which the noise can be modeled.
In this respect, many recent studies on the impact of redshift
uncertainties on various cosmological aspects are available:
dark energy from supernovae studies and cluster number counts
(Huterer et al. 2004), weak lensing (Bernstein & Jain 2004;
Huterer et al. 2006; Ishak 2005; Ma et al. 2006), and baryon
oscillations (Zhan 2006; Zhan & Knox 2006). All these studies
model the error distribution as Gaussian.

However, photometric redshift error distributions, due to spec-
tral type/redshift degeneracies, often have bimodal distributions,

with one smaller peak separated from a larger peak by z of order
unity (Benı́tez 2000; Fernández-Soto et al. 2001, 2002), or more
complex error distributions, as can be seen in Figure 8 within the
GG sample.
In order to evaluate the robustness of the �r, several instances

of the process were applied to different randomly selected train-
ing, validation, and test sets and the robust � was found to vary
only on the fourth significant digit. Small differences were found
only in the identification of catastrophic objects, which, however,
did not present any significant variation in their frequency.
The distribution of the residuals as a function of the spectro-

scopic redshift for the GG and LRG samples is shown in Fig-
ure 10 separately for the near and distant objects. We have also
studied the dependence of such residuals on the r-band luminos-
ity of the galaxies in the two different magnitude ranges (cf. x 5;
r < 17:7 and >17.7) and in the near and intermediate redshift
bins, as shown in Figures 11 and 12 for the GG and LRG galax-
ies, respectively. Clear systematics are found only for near/faint
and intermediate/ luminous LRGs residuals; in the former case,
the mean value of residual zphot � zspec is systematically higher
then 0, while in the latter it is constantly biased to negative val-
ues. Both cases can be addressed by remembering that these gal-
axies occupy a poorly sampled volume in the parameter space,
and therefore the NN fails to reproduce the exact trend of spec-
troscopic redshift.

Fig. 10.—Distribution of the residuals vs. spectroscopic redshift after the correction for systematic trends. Top panels: GG nearby and distant samples. Bottom
panels: LRG nearby and distant samples. The central line marks the average value of the residuals. The 1 and 2 � confidence levels are also shown. [See the electronic
edition of the Journal for a color version of this figure.]
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In Figure 13 we show the same plot as in Figure 6 but with-
out isocontours and plotting as black dots the objects which ‘‘a
posteriori’’ were labeled as members of the LRG sample. Inter-
estingly enough, in the nearby sample the non-LRG and the LRG
have robust variances of �3 ¼ 0:021 and 0.020. Note, however,
that the LRG objects show a clear residual systematic trend. This
behavior can be explained by the fact that in the nearby sample,
the training set contains a large enough number of examples for
both samples of objects, and the network can therefore achieve
a good generalization capability. In the distant sample the non-
LRG and LRG objects have robust variances instead, given by
�3 ¼ 0:321 and 0.021. Also, in this case the observed behavior
can be easily explained as being due to the heavy bias toward the
LRGs which form�88.5% of the sample. It must be stressed that
while the remaining 11.4% of the objects still constitute a fairly
large sample, the uneven distribution of the training data be-
tween the two groups of objects overtrains the NN toward the
LRG objects which therefore are much better traced. This con-
firms what was already found by several authors (Padmanabhan
et al. 2005), the derivation of photometric redshifts requires not
only an accurate evaluation of the errors, but also the identifica-
tion of a homogeneous sample of objects.

Objects not matching the 3 � criterion used for the robust var-
iance are 3.47% for the LRG sample and 3.18% for the GG sam-
ple. Before correction, the rejected points are’2% of the overall
distribution for the GG sample and ’1.8% for the LRG one.

As was already mentioned, the SDSS data set has been ex-
tensively analyzed by several authors who have used different
methods for photometric redshift determination. Unfortunately,
a direct comparison is not always possible due to differences in
either the data sets (different data releases have been used) or in
the way errors were estimated. It must be stressed, however, that
due to the fact that above a minimum and reasonably low thresh-
old the NN performances are not affected much by the number
of objects in the training set, the former factor can be safely
neglected. So far, the most extensive works are those by Csabai
et al. (2003) andWay & Srivastava (2006). In the former various
methods were tested against the EDR data. With reference to
their Table 3, and using the ‘‘iterated’’ � which almost coincides
with the robust variance adopted here, we find that the best per-
formances were obtained, among the SED fittingmethods for the
BC synthetic spectra (�it ’ 0:0621 and ’0.0306), for the GG
and LRG samples, respectively. This method, however, leads to
very clear systematic trends and to a large number of catastrophic
outliers (�3.5%). Much better performances were attained by
empirical methods, and in particular by the interpolative one
which leads to a �it ’ 0:0273 with a fraction of catastrophic red-
shifts of only 2%. In Way & Srivastava (2006) the authors made
use of an ensemble of NN (E) and Gaussian process regressions
(GP). Their best results using the magnitudes only were 0.0205
and 0.0230 for the E and GP methods, respectively, and in con-
trast with our method, their methods greatly benefit by the use of

Fig. 11.—Distribution of residuals for the GG sample divided in magnitude bins. Top left, Nearby sample, r < 17:7; top right, nearby sample, r > 17:7; bottom left,
distant sample, r < 17:7; bottom right, r > 17:7. [See the electronic edition of the Journal for a color version of this figure.]
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additional parameters such as the Petrosian radii, the concentra-
tion index, and the shape parameter.

Two points are worth stressing. First of all, their selection cri-
teria for the construction of the training set appear much more
restrictive, and it is not clear what performances could be achieved

should such restriction be relaxed. Second, even though such an
‘‘ensemble’’ approach is very promising and is likely to be the
most general one, it has to be stressed that the bagging procedure,
used in Way & Srivastava (2006) to combine the NNs, is known
to be very effective only in those cases where the intrinsic var-
iance of the adopted machine learning model is high. In this
specific case, which had a large number of training data and few
input features, the NN result is very stable, and therefore other
combining procedures, such as AdaBoost (Freund & Schapire
1996), should be preferred (Dietterich 2002). This might also be
the reason why when only the photometric parameters are used
their method gives slightly worse performances than ours and
instead leads to better results when the number of features is
increased.
An additional machine learning approach, namely support

vector machines, was used by Wadadekar (2005). In Table 4 we
briefly summarize the main results of the above-quoted papers.

7.1. Contamination by Distant Galaxies

The fact that our NNs are trained on a sample of galaxies
with observed redshift zspec < 0:5 introduces some contami-
nation from objects which, even though they are at z > 0:5, still
have r < 21 and therefore match the photometric selection
criteria.
The only possible way to avoid such an effect would be to

use a knowledge base covering, in a uniform way, all significant

Fig. 12.—Distribution of residuals for the LRG sample divided in magnitude bins. Top left, Nearby sample, r < 17:7; top right, nearby sample, r > 17:7; bottom left,
distant sample, r < 17:7; bottom right, r > 17:7. [See the electronic edition of the Journal for a color version of this figure.]

Fig. 13.—Plot of the same data shown in the lower panel of Fig. 6, with the
LRG and GG objects marked as black and gray dots, respectively.
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regions of the photometric parameter space down to the adopted
magnitude limit. In the case of SDSS this is true for magnitudes
brighter than 17.7 but is not true at fainter light levels, where the
only region uniformly covered by the spectroscopic subsample
is that defined by the LRG selection criteria. A possible way out
could be to extend the base of knowledge to fainter light levels by
including statistically significant and complete samples of spec-
troscopic redshifts from other, deeper surveys. The feasibility of
using a third NN to classify (and eventually dispose of ) objects
having z > 0:5 is under study. At the moment, however, since we
are interested in validating the method and in producing catalogs
to be used for statistical applications, we shall estimate the num-
ber and distribution in magnitude of such contaminants on statis-
tical grounds using only the r-band luminosity function derived
from SDSS data by Blanton et al. (2003). This function, in fact,
allows us to derive for any given absolute magnitude the number
of objects which, even though they are at a redshift larger than 0.5,
still match our apparent magnitude threshold and thus are
misclassified. By integrating over the absolute magnitude and
over the volume covered by the survey we obtain the curve in
Figure 14 which corresponds to a total number of contaminants
of�3:74 ; 106. It has to be noted, however, that for magnitudes
brighter than 20.5, the fraction of contaminants is less than 0.04
and drops below 0.01 for r < 20.

8. THE CATALOGS

The catalogs containing the photometric redshift parameters
together with the parameters used for their derivation can be down-
loaded at http://people.na.infn.it/~astroneural/SDSSredshifts.htm.
This data, for consistency with the SDSS survey, has been sub-
divided into several files, each corresponding to a different SDSS
‘‘stripe’’ of the observed sky. A ‘‘stripe’’ is defined by a line of
constant survey latitude �, bounded on the north and south by

the edges of the two strips (scans along a constant � value), and
bounded on the east and west by lines of constant lambda. Be-
cause both strips and stripes are defined in ‘‘observed’’ space, they
are rectangular areas which overlap as one approaches the poles.8

The data for bothGG andLRG samples have been extracted using
the queries described in x 4. The catalogs can be downloaded as
‘‘FITS’’ files, containing the fundamental parameters used for
redshift determination and the estimated photometric redshift for
each individual source. In more detail (SDSS database names of
the parameters are in brackets): unique SDSS identifier (objID),

TABLE 4

Comparisons of Various Methods for the Photometric Redshift Estimation Applied to the SDSS Data

Method

(1)

Data

(2)

�z

(3)

�

(4)

Range

(5)

Reference

(6 )

SED fitting CWW.............................. EDR . . . 0.0621 . . . Csabai et al. (2003)

SED fitting BC................................... EDR . . . 0.0509 . . . Csabai et al. (2003)

Interpolative ....................................... EDR . . . 0.0451 . . . Csabai et al. (2003)

Bayesian ............................................. EDR . . . 0.0402 . . . Csabai et al. (2003)

Empirical, polynomial fit ................... EDR . . . 0.0318 . . . Csabai et al. (2003)

K-D tree ............................................. EDR . . . 0.0254 . . . Csabai et al. (2003)

Class X............................................... DR2 . . . 0.0340 . . . Suchkov et al. (2005)

Gaussian Process................................ DR3 . . . 0.0230 . . . Way & Srivastava (2006)a

Ensemble............................................ DR3 . . . 0.0205 . . . Way & Srivastava (2006)a

ANNz ................................................. EDR . . . 0.0229 . . . Collister & Lahav (2004)

SVM................................................... DR2 . . . 0.027 . . . Wadadekar (2005)

SVM................................................... DR2 . . . 0.024 . . . Wadadekar (2005)a

MLP ff................................................ DR1 0.016 0.022 <0.4 Vanzella et al. (2004)

Template fitting and hybrid ............... DR1-LRG <0.01 �0.035 <0.55 Padmanabhan et al. (2005)

MLP ................................................... DR5-GG �0.0036 0.0197 0.01, 0.25 This work before interpolation

DR5-GG �0.0036 0.0245 0.25, 0.48 This work before interpolation

DR5-GG . . . 0.0197 0.01, 0.25 This work after interpolation

DR5-GG . . . 0.0238 0.25, 0.48 This work after interpolation

DR5-LRG �0.0029 0.0154 0.01, 0.25 This work before interpolation

DR5-LRG �0.0029 0.0189 0.25, 0.48 This work before interpolation

DR5-LRG �0.0029 0.0160 0.01, 0.25 This work after interpolation

DR5-LRG �0.0029 0.0183 0.25, 0.48 This work after interpolation

Notes.—Col. (1): Method (for the acronyms, see text). Col. (2): Data set (EDR=Early Data Release; DR1 through DR5 the various SDSS
data releases). Col. (3): Systematic offset. Col. (4): Standard deviation. Col. (5): Redshift range over which the average error is estimated.
Col. (6): References.

a Additional morphological and photometric parameters.

Fig. 14.—Estimated distribution of contaminants as a function of the ap-
parent r magnitude. The y-axis gives the expected fraction of objects at z > 0:5
that are erroneously evaluated by our procedure.

8 For more details see http://www.sdss.org.
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right ascension J2000.0 (R.A.), declination J2000.0 (decl.), de-
reddened magnitudes (dered_u, dered_g, dered_r, dered_i,
dered_z), and the estimated value of photometric redshift be-
fore correction (zphot) and after correction (zphot_corr).

9. CONCLUSIONS

In the previous sections, we discussed a two-step applica-
tion of neural networks to the evaluation of photometric redshifts.
Even though finely tailored on the characteristic of the SDSS, the
method is completely general and can be easily applied to any
other multiband data set, provided that a suitable base of spec-
troscopic knowledge is available. As most other neural networks
methods, several advantages are evident:

1. The NN can be easily retrained if new data become avail-
able. Even though the training phase can be rather demanding in
terms of computing time, once the NN has been trained, the der-
ivation of redshifts is almost immediate (107 objects are processed
on the fly on a normal laptop).

2. Even though it was not necessary in this specific case, all
sorts of a priori knowledge can be taken into account.

On the other hand, the method suffers from those limitations which
are typical of all empirical methods based on interpolation. Most
of all, the training set needs to ensure a complete and if possible
uniform coverage of the parameter space.

Our method allowed us to derive photometric redshifts for
zP 0:5 with robust variances of �3 ¼ 0:0208 for the GG sample
(�3 ¼ 0:0197 and 0.0238 for the nearby and distant sample, re-
spectively) and �3 ¼ 0:0164 for the LRG sample (�3 ¼ 0:0160

and 0.0183). This accuracy was reached using a two-step ap-
proach that permits the building of training sets which uniformly
sample the parameter space of the overall population.
In the case of LRGs, the better accuracy and the closeGaussianity

of the residuals are explained by the fact that this sample was
selected based on the a priori assumption that they form a rather
homogeneous population sharing the same SED. In other words,
this result confirms what has long been known, i.e., the fact that
when using empirical methods, it is crucial to define photomet-
rically homogeneous populations of objects.
In the more general case it would be necessary to define pho-

tometrically homogeneous populations of objects in the absence
of a priori information and therefore to rely only on the photo-
metric data themselves. This task, as it has been shown for in-
stance by Suchkov et al. (2005) and Bazell & Miller (2004) is a
nontrivial one, since the complexity of astronomical data and the
level of degeneration is so high that most unsupervised cluster-
ing methods partition the photometric parameter space in far too
many clusters, thus preventing the buildup a of a suitable base of
knowledge. A possible way to solve this problem will be dis-
cussed in Paper III.
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